Safety Radiation Meter SRM-3006



# **Application Note 1106**

# Code-selektive Messungen mit dem SRM-3006 Verwendung der Option LTE-TDD

Mit dem Firmware-Release 1.5.0 ermöglicht das SRM 3006 auch die Demodulation von LTE-Signalen mit TDD-Duplexmodus. Dieser Artikel gibt einen Überblick und beschreibt die wichtigsten Unterschiede zum FDD-Modus.



Bild 1: Narda SRM-3006

## Inhalt

| 1 | LTE und seine E-UTRA-Frequenzbänder    | Seite | 2 |
|---|----------------------------------------|-------|---|
| 2 | LTE und seine Duplex-Modi              | Seite | 3 |
| 3 | Up-/Downlinkkonfigurationen in LTE-TDD | Seite | 4 |
| 4 | Bedienung SRM-3006 LTE-TDD-Option      | Seite | Ę |
| 5 | Weitere Literatur                      | Seite | 6 |
|   |                                        |       |   |

© August 2017

Narda Safety Test Solutions GmbH Autoren:

Mark Reinhard, Helmut Keller

Sandwiesenstr. 7

72793 Pfullingen, Deutschland

Tel.: +49 7121 9732-0 Fax: +49 7121 9732-790

E-mail: info.narda-de @L3T.com

www.narda-sts.com

AN\_1106\_SRM\_LTE\_TDD

1/6

Änderungen vorbehalten

**CMV** Hoven GmbH An der Eickesmühle 30 D-41238 Mönchengladbach

Telefon/ +49(0)2166 94 59 90 Telefax/ +49(0)2166 94 59 92 9





#### 1 LTE und seine E-UTRA-Frequenzbänder

"LTE" steht für Long Term Evolution. Dabei handelt es sich um das Mobilfunknetz der vierten Generation (4G). Der Spezifikationsprozess für LTE begann etwa 2004 und dauerte rund ein halbes Jahrzehnt bis zwischen 2008 und 2010 erste LTE-Netze in Betrieb gingen. Heute ist LTE in fast allen Teilen der Welt operativ und hat sich bereits zu LTE-Advanced bzw. "4.5G" fortentwickelt. Es ist abzusehen, dass LTE auch innerhalb des nächsten Jahrzehnts eine wichtige Rolle, insbesondere in Verbindung mit dem Mobilfunkstandard der fünften Generation (5G), spielen wird.

LTE-Frequenzen basieren auf der E-UTRA-Spezifikation. Diese sieht Bänder zwischen 700 MHz und 3700 MHz vor. (E-UTRA-Band 46 liegt sogar bei 5200 MHz, wird nach Informationsstand dieses Artikels jedoch nicht verwendet.) Tabelle 1 stellt einige E-UTRA-Bänder inklusive Frequenz- und Duplex-Information ausschnittweise gegenüber.

| E-UTRA-Band | Frequenzband [MHz] | Frequenzbe      | Duplex-Modus    |     |
|-------------|--------------------|-----------------|-----------------|-----|
| 1           | 2100               | UL: 1920 – 1980 | DL: 2110 – 2170 | FDD |
| 3           | 1800               | UL: 1850 – 1910 | DL: 1930 – 1990 | FDD |
| 7           | 2600               | UL: 2500 – 2570 | DL: 2620 – 2690 | FDD |
| 12          | 700                | UL: 699 – 716   | DL: 729 – 746   | FDD |
| 30          | 2300               | UL: 2305 – 2315 | DL: 2350 – 2360 | FDD |
| 33          | 2100               | 1900 -          | TDD             |     |
| 38          | 2600               | 2570            | TDD             |     |
| 40          | 2300               | 2300            | TDD             |     |
| 42          | 3500               | 3400            | TDD             |     |
| 44          | 700                | 703             | TDD             |     |
| 65          | 2100               | UL: 1920 – 2010 | DL: 2110 – 2200 | FDD |

Tabelle 1: E-UTRA- / LTE-Frequenzbänder (UL: Uplink, DL: Downlink) und Duplex-Modi (Stand: April 2017)

Durch Tabelle 1 wird klar, dass einige Frequenzbänder durchaus überlappen können. Prinzipiell erhöht dies den Bedarf an Spektrum-Management, insbesondere in Grenzregionen, und birgt das Risiko von Funkstörungen. Gemeinsame spektrale Anteile gibt es zum Beispiel bei den Bändern 12 und 44 und bei den Bändern 30 und 40. Tabelle 1 verdeutlicht auch, dass jedes LTE-Frequenzband exklusiv einen bestimmten Duplex-Modus, entweder Frequency Division Duplex (FDD) oder Time Division Duplex (TDD), vorsieht. (Die vollständige Betrachtung sämtlicher E-UTRA-Bänder zeigt: Die Bänder 1 bis 32 und 65 bis 71 erlauben ausschließlich FDD, während die Bänder 33 bis 46 ausschließlich TDD erlauben.) Der Duplex-Modus beschreibt, in welcher Dimension Up- und Downlink voneinander getrennt werden. Ihm widmen sich die folgenden Seiten im Detail.

Zum Veröffentlichungszeitpunkt dieses Artikels wird LTE weltweit mehrheitlich im FDD-Modus verwendet. Laut Global Mobile Suppliers Association (GSA) waren Ende Januar 2017 weltweit 95 LTE-TDD-Netzwerke in 54 Ländern in Betrieb. Zu jenem Zeitpunkt operierten 32 Netzbetreiber sowohl LTE-FDD-, als auch -TDD-Netzwerke. Sehr häufig finden sich TDD-Netzwerke in China und Indien, aber auch in Kanada, den USA und einigen afrikanischen Ländern, insbesondere Ghana und Nigeria. In Europa findet sich LTE hauptsächlich im FDD-Modus, allerdings existieren TDD-Netzwerke beispielsweise in Belgien, Finnland, Irland, Italien, Niederlande, Schweden, Slowakei, Spanien und Russland.

AN\_1106\_SRM\_LTE\_TDD

2/6

Änderungen vorbehalten

**CMV** Hoven GmbH An der Eickesmühle 30 D-41238 Mönchengladbach

Telefon/ +49(0)2166 94 59 90 Telefax/ +49(0)2166 94 59 92 9





#### 2 LTE und seine Duplex-Modi

Bezieht man sich in zellularen Mobilfunksystemen wie 2G, 3G und 4G auf den Duplex-Modus, so betrachtet man wie die Kommunikation zwischen Endgerät und Basisstation erfolgt bzw. wie Up- und Downlink voneinander getrennt sind. Sowohl in 2G, als auch in 3G und den meisten Frequenzbändern in 4G (siehe Tabelle 1) ist für den Uplink (also für das Funksignal vom Endgerät zur Basisstation) ein bestimmter Frequenzbereich reserviert. Parallel gibt es auch für den Downlink (Funksignal von der Basisstation zum Endgerät) einen exklusiven Frequenzbereich. Die Trennung zwischen zwei Kommunikationskanälen erfolgt hier demnach über die Frequenz, somit handelt es sich um "Frequency Division Duplex".

LTE sieht neben FDD-Bändern auch TDD-Bänder vor. Dies bedeutet, dass zwei Kommunikationskanäle nicht über die Frequenz, sondern über die Zeit voneinander getrennt werden. Up- und Downlink arbeiten also auf der gleichen Frequenz, müssen sich aber in sehr geregelter Weise abwechseln. Bild 1 veranschaulicht diesen Sachverhalt.

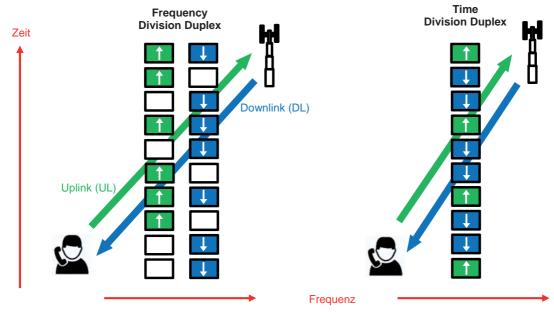



Bild 2: Unterscheidung FDD (links) und TDD (rechts)

Die Darstellung von FDD auf der linken Seite in Bild 1 gibt zu verstehen, dass Uplink und Downlink auf zwei verschiedenen Frequenzen / Bändern arbeiten, zeitlich aber parallel laufen können. Es ist wichtig zu verinnerlichen, dass jener "zeitlich parallele Ablauf" nicht beliebig ist, sondern abhängig vom jeweiligen Mobilfunkstandard einem bestimmten Protokoll unterliegt. Ebenso ist zu bemerken, dass je nach aufkommendem Datenverkehr zur Verfügung stehende Zeitschlitze auch ungenutzt bleiben können (Kästchen in weiß).

Der rechte Teil in Bild 1 stellt TDD dar und verdeutlicht, dass hier lediglich ein Frequenzband genutzt wird. Dementsprechend müssen sich Up- und Downlink gegenseitig abwechseln. Keinesfalls müssen Up- und Downlink dabei genau gleich viele Ressourcen (also Zeitschlitze) zur Verfügung gestellt werden. Im Gegenteil: Typischerweise werden dem Downlink eher mehr Ressourcen zur Verfügung gestellt, da Endgeräte mehr Daten herunter- als hochladen. Dies wird

AN\_1106\_SRM\_LTE\_TDD

3/6

Änderungen vorbehalten

**CMV** Hoven GmbH An der Eickesmühle 30 D-41238 Mönchengladbach

Telefon/ +49(0)2166 94 59 90 Telefax/ +49(0)2166 94 59 92 9





in Bild 2 durch die größere Anzahl blauer DL-Kästchen angedeutet. Damit sich Up- und Downlink in TDD konfliktfrei abwechseln, ist auch hier ein Protokoll erforderlich. Für eine moderne Mobilfunktechnik wie LTE fällt dieses Protokoll eher aufwändig aus. Näherungsweise kann man es sich aber wie ein Gespräch zwischen zwei Personen über einfache, auf gleicher Frequenz arbeitende Walkie-Talkies vorstellen: Während Person 1 spricht, hört Person 2 zu, und umgekehrt. – Beide Personen wechseln sich also ab. Würden beide Personen gleichzeitig sprechen, würde dies zu einem Konflikt führen, die Kommunikation wäre unverständlich. Angenommen Person 1 hätte mehr mitzuteilen als Person 2, so würde erstere mehr Ressourcen beanspruchen, ähnlich dem TDD-Downlink in Bild 1.

## 3 Up-/Downlinkkonfigurationen in LTE-TDD

Wie in Kapitel 2 erläutert, unterliegt LTE-TDD einem bestimmten Protokoll. Unter anderem legt dieses fest, wie viele Ressourcen / Zeitschlitze dem Up- und dem Downlink innerhalb einer bestimmten Zeitdauer zu Verfügung gestellt werden sollen. Der in diesem Zusammenhang eingeführte Begriff ist die "Up-/Downlinkkonfiguration" eines TDD-Netzwerkes: Für LTE-TDD werden gemäß Bild 3 sieben Konfigurationen (Index 0 bis 6) definiert, die Ressourcen mal mehr dem Downlink, mal mehr dem Uplink zur Verfügung stellen.

| Up-/Downlink- | Subframe-Nummer |     |    |    |    |    |     |    |    |    |
|---------------|-----------------|-----|----|----|----|----|-----|----|----|----|
| konfiguration | 0               | 1   | 2  | 3  | 4  | 5  | 6   | 7  | 8  | 9  |
| 0             | DL              | SSF | UL | UL | UL | DL | SSF | UL | UL | UL |
| 1             | DL              | SSF | UL | UL | DL | DL | SSF | UL | UL | DL |
| 2             | DL              | SSF | UL | DL | DL | DL | SSF | UL | DL | DL |
| 3             | DL              | SSF | UL | UL | UL | DL | DL  | DL | DL | DL |
| 4             | DL              | SSF | UL | UL | DL | DL | DL  | DL | DL | DL |
| 5             | DL              | SSF | UL | DL | DL | DL | DL  | DL | DL | DL |
| 6             | DL              | SSF | UL | UL | UL | DL | SSF | UL | UL | DL |

Bild 3: Up-/Downlinkkonfigurationen in LTE TDD

Da sich Bild 2 auf den LTE-Standard konzentriert, ist ab nun nicht mehr die Rede von Ressourcen oder Zeitschlitzen, sondern von Subframes. Gemäß Spezifikation hat ein Subframe die Dauer einer Millisekunde. Zehn Subframes bilden einen sogenannten Radio Frame, der die größte Einheit in der LTE-Rahmenstruktur darstellt. Wie aus Bild 2 hervorgeht, kann ein Subframe entweder für den Downlink (DL) oder für den Uplink (UL) eingesetzt werden. Darüber hinaus kann ein Subframe auch als Special Subframe (SSF) fungieren. Das Special Subframe hat verschiedene Funktionen: Es beinhaltet zum einen Pilotsignale des Downlinks und des Uplinks; zum anderen ist ein wesentlicher Teil des Special Subframe als sogenannte Guard Time vorgesehen. Wie in vielen anderen Kommunikationssystemen findet während der Guard Time keinerlei Signalübermittlung statt. Dies dient der Immunisierung gegenüber negativen Einflüssen durch Mehrwegeausbreitung.

AN\_1106\_SRM\_LTE\_TDD 4 / 6 Änderungen vorbehalten

CMV Hoven GmbH An der Eickesmühle 30 D-41238 Mönchengladbach

Telefon/ +49(0)2166 94 59 90 Telefax/ +49(0)2166 94 59 92 9





## 4 Bedienung SRM 3006 LTE-TDD-Option

Mit dem Firmware-Release 1.5.0 ist auf dem SRM 3006 auch die Demodulation von LTE-TDD-Signalen möglich. Dass LTE-TDD anders funktioniert und auch vom SRM anders behandelt werden muss als LTE-FDD, wurde in den Kapiteln 1 bis 3 verdeutlicht. Der wesentliche Unterschied zur FDD-Option ist, dass in der TDD-Option nun zusätzlich die jeweilige Up-/Downlinkkonfiguration eingestellt werden kann.

| Battery: GPS: 14.02.17 14:35:04 |            | 45°29'21.2" N Ant:<br>9°17'37.2" E Cable: |                                    |                                  | 3AX 0.4-6G SrvT<br>Stnd                               |      |                                        |                        |
|---------------------------------|------------|-------------------------------------------|------------------------------------|----------------------------------|-------------------------------------------------------|------|----------------------------------------|------------------------|
|                                 | Table View |                                           |                                    |                                  |                                                       |      |                                        |                        |
| Index                           | Cell ID    | No. Ant                                   |                                    | Avg)                             |                                                       | 1    | Avg (RS Avg)                           | Min (RS Avg)           |
| 1                               | 118        | 2                                         | 70.74                              | Up/Dov                           | vnlink                                                |      | 71.49 dBµV/m                           | 70.35 dBµV/m           |
| 2                               | 114        | 2                                         | 63.49                              | Configuration:                   |                                                       |      | 63.32 dBµV/m                           | 62.30 dBµV/m           |
|                                 |            |                                           |                                    | 0 (Reco<br>1<br>2<br>3<br>4<br>5 | mmended)                                              |      |                                        |                        |
|                                 | Total      |                                           | 72.54                              |                                  |                                                       |      | 72.74 dBµV/m                           | 72.05 dBµV/m           |
|                                 | Analog     |                                           | 85.98                              |                                  |                                                       |      | 85.49 dBµV/m                           | 84.74 dBµV/m           |
| Isotropic                       |            |                                           |                                    |                                  |                                                       |      | Up/Dow                                 | nlink Configuration: 0 |
|                                 | TE TDD     |                                           |                                    |                                  |                                                       |      |                                        |                        |
| Fcent:<br>MR:                   |            | .468 5 GH<br>18 dBµV/r                    | z CBW:<br>n Extr. Fac<br>Cell Sync |                                  | 1.4 MHz Sweep Tin<br>Off Noise Sup<br>Sync. CP Length | pr.: | 627 ms Prog<br>Off No. (<br>Normal AVG | of Runs: HOLD          |

Bild 4: LTE-TDD-Option in SRM 3006 mit Auswahl der Up-/Downlinkkonfiguration

Liegt sichere Kenntnis darüber vor, welche Up-/Downlinkkonfiguration in einem LTE-TDD-Netzwerk verwendet wird, so kann diese während einer Messung im SRM 3006 entsprechend eingestellt werden, wie Bild 3 veranschaulicht. Bei korrekter Konfigurationseinstellung profitiert das SRM von einer leicht reduzierten Messunsicherheit. Wird allerdings eine Einstellung gewählt, die nicht mit der tatsächlichen Up-/Downlinkkonfiguration übereinstimmt, so erhöht sich das Risiko einer Über-/Unterbewertung signifikant. Die Ausnahme hiervon stellt die Konfigurationseinstellung "0 (Recommended)" dar. Diese ist universell auf alle Netzwerkkonfigurationen anwendbar. Bei der Einstellung "0" konzentriert sich das SRM auf die Subframes 0 und 5 und auch auf die sicheren Downlink-Anteile in den Special Subframes (also Subframes 1 & 6). Bild 3 und die Erläuterungen zu den SSF auf der vorhergehenden Seite verdeutlichen, dass diese vier Subframes unabhängig von der Up-/Downlinkkonfiguration immer Downlink-Signale mit sich führen. Demnach ist dringend zu empfehlen, die Konfigurationseinstellung "0 (Recommended)" als Standard-Einstellung zu wählen und auch dann zu verwenden, wenn die tatsächliche Up-/Downlinkkonfiguration nicht mit absoluter Sicherheit bekannt ist.

Es ist zu verinnerlichen, dass das SRM mit der Konfigurationseinstellung "0 (Recommended)" auch dann in der Lage ist, TDD-Signale zu demodulieren, wenn diese nicht mit der tatsächlichen Konfiguration des Netzwerkes übereinstimmt. Wird die tatsächliche Konfiguration eingestellt, erreicht man, wie bereits erwähnt, lediglich eine leichte Verbesserung der Messsicherheit. Wird eine andere Konfiguration als "0 (Recommended)" eingestellt und entspricht diese nicht der tatsächlichen Konfiguration des Netzwerkes, dann verschlechtert sich die Messsicherheit jedoch erheblich und auch die grundsätzliche Funktion der Demodulation kann dann nicht mehr sichergestellt werden!

AN\_1106\_SRM\_LTE\_TDD

5/6

Änderungen vorbehalten

**CMV** Hoven GmbH An der Eickesmühle 30 D-41238 Mönchengladbach

Telefon/ +49(0)2166 94 59 90 Telefax/ +49(0)2166 94 59 92 9





#### 5 Weitere Literatur

Dieser Artikel beschreibt die Option LTE-TDD im SRM 3006. Weitere Informationen zu LTE, aber auch zu UMTS sind im Internet zu finden unter: <a href="https://www.narda-sts.com/de/selektiv-emf/srm-3006">www.narda-sts.com/de/selektiv-emf/srm-3006</a>

Neben Kapitel 12.6 "LTE-TDD" in der SRM 3006-Bedienungsanleitung sei an dieser Stelle insbesondere auch auf folgende drei Dokumente auf der Narda STS-Internetseite verwiesen:

- Immissionsmessungen in der Umgebung von LTE-Basisstationen (Teil 1: Grundlagen)
  Application Note AN 1062
- Immissionsmessungen in der Umgebung von LTE-Basisstationen (Teil 2: Messmethoden)
  Application Note AN 1064
- Anwendung der Betriebsart UMTS Technical Note 10



## Narda Safety Test Solutions GmbH

Sandwiesenstrasse 7 72793 Pfullingen, Germany Phone: +49 (0) 7121-97 32-0 Fax: +49 (0) 7121-97 32-790 E-mail: info.narda-de@L3T.com www.narda-sts.com

#### **Narda Safety Test Solutions**

435 Moreland Road Hauppauge, NY 11788, USA Phone: +1 631 231-1700 Fax: +1 631 231-1711 E-Mail: NardaSTS@L3T.com www.narda-sts.us

#### Narda Safety Test Solutions Srl

Via Leonardo da Vinci, 21/23 20090 Segrate (Milano) - Italy Phone: +39 02 269987 1 Fax: +39 02 269987 00 E-Mail: nardait.support@L3T.com

www.narda-sts.it

® Namen und Logo sind eingetragene Markenzeichen der Narda Safety Test Solutions GmbH und L3 Communications Holdings, Inc. – Handelsnamen sind Markenzeichen der Eigentümer.

AN\_1106\_SRM\_LTE\_TDD

6/6

Änderungen vorbehalten

**CMV** Hoven GmbH An der Eickesmühle 30 D-41238 Mönchengladbach

Telefon/ +49(0)2166 94 59 90 Telefax/ +49(0)2166 94 59 92 9

